USMN1 DIAIO

DIAION™ USMN1 is a nuclear grade mixed resin with strongly acidic cation exchange resin, DIAION™ UBKN1, and strongly basic anion exchange resin, DIAION™ UBAN1. It is used for cleanup system in primary circuit, cleanup system SFP, radwaste, etc.

Product

Grade Name	DIAION TM USMN1
Type	Mixed
Matrix	Styrene-DVB, Gel
Functional Group	Sulfonic acid / Type I (trimethyl ammonium groups)
Ionic Form	H^{+}/OH^{-}
Chemical Equivalent Ratio	1/1

Specification

Component		Cation Exchange Resin	Anion Exchange Resin
		DIAION [™] UBKN1	DIAION TM UBAN1
Whole Bead Count	-	90 min.	-
Salt Splitting Capacity	meq/mL	2.4 min.	1.2 min.
Particle Size Distribution on 1180 μm	%	-	0.5 max.
Particle Size Distribution thr. 425 μm	%	1.0 max.	1.0 max.
Particle Size Distribution 425 - 1180 μm	%	95 min.	-
Mean Particle Size	μm	650 ± 50	630 ± 50
Uniformity Coefficient	-	-	1.2 max.
Ionic Form Conversion H Form	eq%	99 min.	-
Ionic Form Conversion Na Form	eq%	0.1 max.	-
Ionic Form Conversion OH Form	eq%	-	95 min.
Ionic Form Conversion CO ₃ Form	eq%	-	5 max.
Ionic Form Conversion Cl Form	eq%	-	0.2 max.
Metal Content (Ca)	mg/L	50 max.	50 max.
Metal Content (Pb)	mg/L	10 max.	10 max.
Metal Content (Fe)	mg/L	50 max.	50 max.
Metal Content (Cu)	mg/L	10 max.	10 max.
Water Extractables	g/L-R	0.1 max.	0.1 max.

Typical Properties

	Component		Mixed Resin
	Shipping Density	g/L	730
Re	ecommended Operating Co	nditions	
Ma	ximum Operating Temperature	°C	60
	Operating pH Range		0 - 14

mm

m/h

Minimum Bed Depth

Service Flow Rate

800

10 - 60

DIAION[™] USMN1

Hydraulic Characteristics

The approximate pressure drop at various temperatures and flow rates for each meter of bed depth of DIAIONTM USMN1 resin in normal down flow operation is shown in the graphs below.

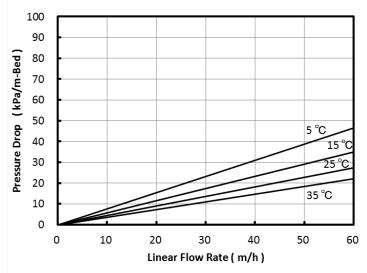


Fig. 1 Pressure Drop of USMN1

Notice

DIAIONTM is a registered trademark of Mitsubishi Chemical Corporation. The information contained herein is believed to be true and accurate, but all data, recommendations and suggestions are provided without guarantee, since the conditions of use are beyond our control and can affect the performance and properties of our products. The user is solely responsible for confirming that our product is suitable for the intended end use, and for compliance with all legal regulations and patents. Other than compliance with published Mitsubishi Chemical Corporation specifications agreed to pursuant to a signed writing during the warranty period, and except as required by law, MITSUBISHI CHEMICAL CORPORATION AND ITS AFFLIATES MAKE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY ARISING OUT OF A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE. If a product is found to be defective during the warranty period, user's sole remedy and our sole obligation is, at our option, replacement of the affected product or refund of the purchase price. Except as required by law, we are not liable for any damage, harm or loss resulting from our product, whether direct, indirect, consequential, incidental or special, and irrespective of legal theory asserted, including strict liability, contract, warranty, or negligence.

